Modeling Rugged 3D Terrain from a Long Sequence of Range Images for Outdoor Mobile Robots

Takeo Kanade and In So Kweon

The Robotics Institute
Carnegie Mellon University

October 16, 1989
From Range Image to Elevation Map

Traditional Method

1. Convert a range image to cartesian elevation map by coordinate transform.
2. Smooth and interpolate elevation map.

Sparse and non-uniform data

Range Image Plane (Uniform and dense)

Shadow (visibility) — occlusion

Uncertainty — from sensor to map
Elevation Maps by Locus Method and Traditional Method
Elevation Map by Locus Method on Range Images

Single Frame
Scanner: ERIM laser range finder: 30 deg × 80 deg field of view
(64 rows × 256 cols)
Uncertainty — from Sensor to Map
Terrain Feature Extraction

- Height and Orientation Discontinuities in Elevation Map
- Region Growing into Primitive Surfaces Using Smoothness Constraints
- 3D Polygon Mesh Representation
- Grouping Primitive Features into Higher-Level Features (e.g. ditch, slope, etc)
Representation of Terrain Maps

Elevation Map
- elevation: \(z = f(x, y) \)
- uncertainty: \(\sigma^2 = E[Z^2] - E^2[Z] \)
- visibility: known, occluded, unknown
- topography: peak, pit, ridge, ravine, saddle, ...
- slope
- roughness: amplitude, spatial frequency, ...
- material properties: friction, composition, ...
- traversability: \(f(\text{roughness, slope, material, ...}) \)

Discrete Object Description
- size, shape, location, material properties
- paths, viewpoints
Iconic Matching

- Initial estimation from Feature matching

- Given a map and a new frame, find \(T \) to minimize:

\[
E = \sum \| h_1(u, v) - g(u, v, T) \|^2 \\
g(u, v, T) = T^{-1}(h_2(u', v')) = R' h_2(u', v') + t'
\]

\((u, v)\): A 3D line in space.
\((u', v')\): The transformed line by \(T \).

- NO correspondences (Generic Locus Method)

- Computational complexity
 - Coarse to fine approach.
 - Rough terrain areas - peaks, pits.
Result of Feature-Based Matching

Features: high curvatures points and lines.
Experimental Result for Uncertainty Model of Elevation Map

\[\sigma \] (cm)

\[\text{depth} \] (bits)

for flat. one
(real data)

for real scene.